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 Relationships between cause(s) and effect(s) in Process Industry with complex in biochemical processes 

often cannot be explained with conventional methods (Lean, CIP, Six Sigma). 

 The use of machine learning (ML) or artificial intelligence (AI) for product and process improvement offers 

solutions, but places new demands on hardware and software.

 This requires the introduction of new IT systems and underlying architectures, as well as the harmonisation

of ML environments with existing IT architectures in the company.

 The increasing digitalisation of plants and their connectivity ("Industry 4.0") are drivers of high data 
availability, but also increase the complexity that needs to be mastered.

 Existing reference models are either too abstract, manufacturer-specific and do not sufficiently combine 

existing IT landscapes with required new technologies.

 Methodical support and moderation for the implementation of ML architectures in your own company!

Why do we need a Reference Architecture?
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What is a Reference Architecture?
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Reference Architecture

 „Abstract architecture that is intended to make it easier for people to develop systems, solutions and

applications by providing knowledge and a framework for development. The relationship between

reference architecture and concrete architecture is characterised by the fact that the subject matter or content

of the reference architecture is (re)used in the construction of the concrete architecture of the particular

system to be developed. The reference architecture has a technical focus, but combines this with the
associated expertise of the respective domain. It forms a common framework through its expression and

content, around which detailed discussions of all stakeholders involved in the development can be

conducted." (Reidt et al. 2018)
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Who is it made for?
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 Transparency about required elements, data flows and solution approaches for the implementation of ML in 

the Process Industry.

 Increasing the quality and suitability of real ML architectures while reducing risks through the use of proven 

solutions and good practices

 Saving time in building ML architectures by reusing or deriving elements from the reference architecture

 Enabling a structure for data-driven process optimisation and related KPI-oriented improvements

 Creation of an innovative solution space

 Use of the reference architecture as a communication element

What are the goals of the Architecture?
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How was the reference architecture developed?
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Reference Architecture

Forschung

Literature:

 Research-based identification of use cases and 
required architecture components

 (I)IoT (reference) architectures

 ML environments and architectures
 IT structures and requirements in technology terms

DaPro project:
 Both use cases and ML architectures are developed 

in a research-driven manner and tested in practice.
 Discussions with Data Science and ReadyKit team 

Syskron Xand research department of RapidMiner
 Research institute(s) RIF and IPS

BeyondDaPro:
 Research activities of RIF, RapidMiner and Syskron 

in the fields of process optimisation, ML and IoT
 Discussions with external research institutions

Reference 

Architecture

Praxis

Published Good Practices:

 Existing published ML implementation examples in 
the process industry with focus on ML architectures 

DaPro project:
 Workshops with departments

 Prodction, Logistics, Filling,…
 IT
 Process optimisation

 …
 Interview study

 IT structures and requirements in practice
 Implementation of use cases and ML architectures

BeyondDaPro:
 Practical experience through numerous 

implementation projects at RIF and IPS
 Implementation expertise of the DaPro project 

partners Syskron and RapidMiner

 Discussions with associated partners, e.g. VDMA, 
and other companies in the process industry

Practical Input Research Input
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Overview of the 

Reference Architecture

Layers and Viewpoints
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General Overview
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General Overview

12

Reference Architecture

Details 

Online

http://dapro-projekt.de/w p-content/uploads/2021/07/Referenzarchitektur_Draft.svg

http://dapro-projekt.de/wp-content/uploads/2021/07/Referenzarchitektur_Draft.svg
http://dapro-projekt.de/wp-content/uploads/2021/07/Referenzarchitektur_Draft.svg
http://dapro-projekt.de/wp-content/uploads/2021/07/Referenzarchitektur_Draft.svg
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Details

Asset
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Asset Layer
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 The basic layer of the architecture includes the representation of processes and/or products to be optimised, 

which are realised with the help of an asset. 

 The level represents a combination of the established ISA 88 and ISA 95 structures with common modelling 

forms of cyber-physical production systems (CPS) or “Industrie 4.0” components. 

 An asset corresponds to a plant according to ISA 88, in which a control recipe of a product is transferred into a 
procedure and realised by one or more processes. 

 It is possible to divide the asset into sub-assets, technical equipment and individual control units as well as 

processes into process sections, operations and steps. 

 The reference architecture does not prescribe a mandatory structure for this, in order to be able to address a 

variety of real scenarios. Links between plants, processes and products are relevant, e.g. via unique batch IDs. 

 A specification is made at the higher level of the IT systems, where data is generated and interventions are 

made. 

 Measuring points realised by sensors and possible process interventions by actuators, which can be well 

analysed and visualised for example by PFD or P&ID diagrams, are of particular importance.

 There is an optional interface to edge devices that can upgrade existing systems to CPS through additional 
sensors, connection to network structures or intervention options on the PLC.

Asset Layer - Summary

15
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 DIN EN 61512-1:2000-01 defines the fundamental structures of general, site, master and control recipes. 

In addition to the products, recipes also describe their production process. The design options of products, 

processes and underlying plant technologies are manifold, thus there is no specification. 

 The physical model of DIN EN 61512-1:2000-01 as well as PFD and P&ID diagrams are established as 

standards for structuring and visualising plants in the process industry, especially the underlying sensors and 
actuators. 

 Furthermore, there are initiatives in the DEXPI project or the ISO 15926 series for the harmonised data 

exchange of flow diagrams and associated plant structures as well as metadata. 

 DIN EN ISO 10628-2:2012 introduces a list of common plant components and technical equipment via 

vessels and tanks, centrifuges, heat exchangers, dryers, comminution machines, pumps, valves, etc.. They 
represent the actuators of the asset. 

 There are no limits to the diversity of real designs, so that products, processes, actuators and sensors take 

on individual characteristics and are to be analysed according to the objectives.

Asset Layer - Notes
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Asset - Solution Options
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Reference Architecture
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IT Systems
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 IT systems provide the main data sources for the analyses. Based on the asset level, it expands the digital 

representations of the product, process and the plant itself to also include cross-sectional systems such as 

LIMS, WMS, maintenance or simulation software. 

 The basic structure follows the automation pyramid according to ISA 88 and 95 or the real shop-floor IT.

 PLCs communicate with one or more assets at field level and transfer recipes to the sequence control, 
whose execution is controlled by actuators and progress is documented via sensor values and machine 

states. 

 As part of their higher-level control function, PCSs address the actual and target processing of a recipe 

across several (sub-)plants and can be linked to batch information.

 MES transfer customer orders from ERP systems into concrete production orders to the PCS level; on the 
other hand, a higher-aggregated KPI measurement takes place. They therefore represent an important level 

of productivity measurement based on KPIs. MDA and ODA systems are also relevant.

 Other systems can be stand-alone or integrated into comprehensive MES and ERP systems. Batch 

management is important for the allocation of recipes, batches and raw materials to product, process and 

plant data, LIMS for the label generation of quality parameters, simulation software can be used for the 
artificial generation of data sets for ML. 

 Common to the systems is an integration layer via the network infrastructure, through which data sets are 

integrated in batch or stream form in local or cloud-based databases.

IT Systems - Summary
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 The IT system layer is characterised by application scenarios and IT landscapes in the company and can be 

expanded as needed. The following illustration presents exemplary design options; detailed market overviews 

are available online. 

 The ERP market is dominated by SAP, other providers are Microsoft Navision or Oracle. Special tasks such 

as WMS, maintenance (CMMS) or LIMS are either mapped by individual software or increasingly integrated 
as modules in widespread MES or ERP systems. 

 From the MES level upwards, the designs are more individually adapted to the plant and the production area. 

MES and PCS solutions are also frequently integrated.

 If no historical data is available, simulation systems can also be important data sources for generating test 

and training data. The diversity ranges from discrete-event process simulation (e.g. Plant Simulation) to 
chemical process simulation (e.g. ProSIm BatchReacotor) or free modelling (e.g. MATLAB).

 The concrete design of the IT systems is company-specific. For example, not all systems need to be available 

for all application scenarios. However, clear reference values (e.g. batch IDs or time stamps) are important, 

as the IT systems provide the data basis for later analysis. In addition to data scaling, attention must also be 

paid to data history. 

 A ML-oriented data quality assessment method is provided by (Eickelmann et al. 2019).

IT Systems - Notes

20

Reference Architecture



DaPro

IT Systems - Solution Options
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Edge Device
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 The edge device is an optional component of the reference architecture for the decentralised execution 

of analysis processes to enable short control loops and low data traffic. 

 Edge devices are particularly suitable for analysing data streams. This is supported by developments in AI-

optimised hardware such as GPUs (Graphical Processing Unit) or NPUs (Neural Processing Unit), which are 

increasingly being used in a decentralised manner.

 The focus is less on training models and more on data preprocessing (e.g. feature extraction) and 

application (deployment or scoring). 

 First of all, an interface to sensor and system data is required to provide the basis for decentralised data 

collection, preprocessing and storage. Existing sensors and machine states can be read out via the PLC, 

and edge devices also enable the integration of additional sensors via so-called retrofitting if the PLC cannot 
be accessed or new measuring points are required. 

 Furthermore, an interface for importing models and device management must be provided. 

 The edge device acts parallel to the "IT systems" layer and is integrated via the network infrastructure. 

 The output of the edge device consists of raw or pre-processed data streams as well as analysis results that 

can be made available either to employees or to the plant or a control system.

Edge Device - Summary
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 There are numerous commercially available solutions for the design of hardware, software and interfaces of 

edge devices. 

 One trend is open low-cost solutions on Singe Board PCs (e.g. Raspberry Pi or Arduino) and the use of free software 

such as Node-RED. All common network interfaces such as WLAN, LAN, BLE or 5G as well as application protocols 

such as MQTT, UPC-UA or HTTPS can be used as network connection standards. 

 In a second trend, edge devices are increasingly becoming part of the solution portfolios of machine and plant 

manufacturers, for example Syskron ReadyKit, Bosch XDK or the SIMATIC 2000 series. The software functions either 

follow the provider-specific platforms (e.g. Share2Act), or hyperscalers such as AWS or Microsoft Azure increasingly 

offer comprehensive and user-friendly software functions for the deployment and management of edge devices and 

ML-based processes. 

 NVIDIA Jetson also offer comprehensive solutions for specific image data processing requirements. The following 

figure shows an excerpt of possible designs of edge devices and their components. (Zietsch et al. 2019) also present 

a selection support.

 The technology is useful when existing PLCs cannot be integrated into network structures and when scoring 

close to or inside an Asset is useful. Application areas are, for example, condition monitoring and predictive 
maintenance, which include the evaluation of higher-frequency sensor data (e.g. vibration or oscillation data 

or current curves), as well as video and image data processing. 

 The transitions to the cloud are becoming increasingly fluid as a result of the Fog Computig, as shown by 

developments such as the Edge Data Center and ONCITE (German Edge Cloud) from Rittal.

Edge Device - Notes
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Edge Device - Solution Options
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Network Infrastructure and Databases
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 The network infrastructure and database layer represents an integration view of IT systems, edge devices 

and underlying data sources. 

 The first sub-component is the gateway to the intranet and local (private) cloud environments, which 

combines network technologies and structures for the integration of IT systems and edge devices in internal 

network structures. 

 Underlying databases conventionally consist of a database management system (DBMS) and the data. In 

addition, many database systems offer pre-processing and scoring options. Specific IT systems are often 

based on individual databases, which differ in DBMS, data types, data history and servers, among other 

things. Furthermore, databases that manage artefacts such as processes, models, features or results must 

also be provided for ML environments.

 High computing power is required for the application of ML. Cloud-based platforms offer advantages such as 

scalability and easy maintainability. The internet and public cloud gateway is therefore a module that builds 

on this. Challenges exist in data privacy and security as well as potential dependencies on platform 

providers.

 In addition to the analysis of bundled data packages (batch data) from local and cloud databases, data 
streams for the deployment of ML models are also of interest, depending on the application scenario.

Network Infrastructure and Databases - Summary
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 Due to the heterogeneity of IT and network structures, there is no generally applicable solution for the 

selection of all components. 

 The architecture does not aim to provide a selection guide as to which routers, switches, gateways, VPN 

tunnels, etc. should be selected in a specific case, but rather to create an awareness that precisely these 

paths should be analysed when setting up data pipelines, as they are not only required for training models, 
but must be available in a stable and near-real-time manner during deployment at the latest. 

 In general, all seven levels of OSI architecture (ISO/IEC 7498-1, ITU-T X.200, X.207, ...) must be defined for 

each gateway connection and suitable database technologies must be selected for data storage. 

 Increasingly, machine and plant manufacturers, cloud and IIoT platform operators are providing alternative 

solutions that need to be harmonised with company-specific IT security concepts. 

 A central challenge in the design of the gateways is to ensure data security throughout, e.g. via encryption 

protocols such as TLL and SSL. 

 The following illustration provides an overview of the possible designs. One challenge is the design of the 

ML backbone, as large amounts of data not only have to be connected, but also read and processed.

Network Infrastructure and Databases - Notes
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Network Infrastructure and Databases - Design Options
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 A central element is the ML layer. The basis is data connection management, which integrates local and 

cloud-based databases as well as data streams. 

 The core is formed by three independently operating environments (test, training and deployment 

environment), which are to be orchestrated by an ML project management. 

 Initial analysis processes are created in the explorative test environment. The analysis process consists of the steps 

of data preparation, modelling, evaluation and visualisation. 

 If data connections and promising analysis processes exist, training and optimisation of models take place in the 

training environment. A separate environment is recommended because the training effort can be very time-

consuming with large amounts of data and many influencing variables. 

 Selected models are then transferred to deployment with the help of a transfer mechanism. For this purpose, scoring 

processes are generated that are part of the deployment environment. A scoring process consists of a pre-processing 

path, the scoring itself and a required data connection. 

 The deployment environment applies scoring processes and outputs performance measures in addition to results and 

actions. It can be operated separately, but deployment management that orchestrates several deployment 

environments and thus scoring processes makes sense and is therefore part of the architecture. 

 Depending on the phase of an implementation project and the environments involved, numerous interactions 
take place for which different GUIs exist. They start with the selection and set-up of the environments, 

continue with the generation and evaluation of analysis processes and end with the generation and 

management of scoring processes.

Machine Learning - Summary
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 The design of the ML layer is a strategically relevant decision. Platform solutions are suitable for integrating 

the multitude of possible IT systems and data sources over long and complex production processes in the 

process industry. The question of local or cloud-based hosting must be answered, taking into account the 

effort, convenience and security of cloud-based solutions versus the effort, security and data sovereignty of 

local solutions - always taking into account the expected costs as well.

 Python and R represent cost-effective and lightweight solutions, but they require ML skills. An easier entry is 

offered by graphical software tools such as RapidMiner, which are more recommended for users in the 

manufacturing industry without previous ML experience. Mathematical expert systems appear less 

promising, but can be used if they are already being applied, for example, for process simulation. In addition, 

large platform solutions such as MS Azure or AWS could also provide a basis for the integration of Python, R 
or other software environments such as RapidMiner in the sense of PaaS or IaaS.

 Especially with regard to model management and maintenance, it is important to implement various 

validation and evaluation steps and to continuously monitor deployments. Especially in the process industry 

with constantly changing raw material characteristics and thus unknown framework conditions, ensemble 

strategies often pave the way for robust algorithms in deployment (Kadlec and Gabrys 2009). 

Machine Learning - Notes
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Machine Learning - Design Options
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server-based deployment, 

TF Lite for mobile 

deplyoment or IoT 

applications, TFJS as light-

weight JavaScript

Diverse deployment 

hosting options, batch 

execution of workflows or 

API nodes for external 

deployment

ML Pipeines APIs as well 

as Spark Streaming

Scoring Process

Diverse model export 

functions, e.g. ONNX, also 

deployment options with 

Azure Container, 

Kubernetes Services, 

REST-based HTTP(S) 

endpoint possible

Models (e.g. pickle-Files) 

in versioned containers

Python-based models and 

model groups

Neo Compilation Jobs for 

SageMaker endpoint or 

AWS IoT Greengrass 

device

Proprietary models
Proprietary models, export 

with CoreML possible

Proprietary models, limited 

export options as PMML

Integration of all common 

model formats, add. 

establishing new model 

format (Mlflow Models)

Proprietary models

TensorFlow Model dormat, 

exportable in TensorFlow 

Serving and as JavaScript 

Object (TFJS), Docker and 

YAML export of pipelines

Scoring Recipes 

(proprietary models), 

external API nodes, 

support of Phyton, Spark 

and SQL engines

Proprietary models, export 

in Hadoop as well as JAR-

based scoring code 

possible, Import of models 

(e.g. pkl) for deployment

YAML-storage of pipelines, 

support of the 

environments of 

KFServing, Seldon Core, 

BentoML, NVIDIA Triton, 

TensorFlow Serving, 

TensorFlow Batch 

Prediction

PMML export for a small 

amount of models in MLlib, 

further depending on 

programming environemnt

Export of models in pickle 

files (.pkl), add. package 

specific export formats 

possible (e.g. Joblib oder 

XGBoost)

ML 

Project 

Management

Azure 

Machine Learning 

Workspace

Google 

Cloud 

Project

SageMaker

Studio

ML Scenario Manager 

(Notebooks, Pipelines, 

Executions and Models)

Watson Studio projects
RapidMiner AI Hub, 

RapidMiner Projects

MLflow Projects and 

MLflow Tracking for 

managing projects and 

experiments

Platform for integration of 

Python, R, Java and Scala 

languages as well as 

common ML librarys and 

frameworks like scikit-

learn, TensorFlow, 

PyTorch, Keras, Spark as 

well as environments like 

Azure, SageMaker, H2O, 

...

KNIME Server

Construction and 

management of pipelines, 

artifacts and experiments 

in Airflow, Kubeflow or 

Beam

Dataiku Projects, 

platform-based

DataRobot Project on 

platform

Kubeflow UI for 

management of pipelines 

and notebooks

-

JupyterLab, Jupyter Hub, 

Git-basierte Rstudio-oder 

Python-Projekte, Coment, 

Neptune, …

Analysis Process

Proprietary format in 

Machine Learning Studio, 

Integration of Python und R 

code possible

Python Virtual 

Environment, code-based

SageMaker Notebooks 

(Jupyter Notebooks), code-

based

Graphical programming in 

Modeler, integration of 

Python notebooks

Graphical programming in 

SPSS Modeler or code-

based in Jupyter 

Notebooks

Graphical programming in 

RapidMiner Studio 

integration of Python and R 

code possible

Code-based

Graphical programming in 

KNIME Workbench resp. 

Workflow Editor

Jupyter Notebooks, code-

based construction of 

analysis pipelines, TFX 

Python packages

Graphical programming of 

Analysis Processes, 

web-based GUI

Automated, configurable 

construction of Analysis 

Processes

Code-based 

(Python, R)

Code-based in 

programming 

environments of Scala, 

Java, Python, R by using 

the APIs of MLlib

Code-based 

(Python, R,...)

Repository of 

Algorithms

Limited own repository, 

integration of common 

Python and R frameworks, 

languages  and extensions

Support of TensorFlow, 

PyTorch, R, scikit-learn, 

XGBoost, content of Deep 

Learning Containern in 

diverse NVIDIA Packages 

(CUDA, CuDNN, NCCL)

Integration of common 

Python and R frameworks 

and extensions, add. 

SageMaker JumpStart as 

Reopository of Use Cases

Integration of common 

Python and R frameworks 

and extensions

Support of frameworks like 

PyTorch, TensorFlow and 

scikit-learn as well as R, 

Phython and Scala 

languages

Extensive Repository of 

Algorithms integrated, 

diverse integration options 

of extensions as well as 

Python ad R-codes

Python and R incl. diverse 

repositories, add. Java API

Integrated Node 

Repository in KNIME 

Workbench

Integration of all common 

Python librarys and 

extensions

Visual Rrecipes (Integrated 

repositores), Code 

Recipes (Python and R 

integration)

Diverse integrated models 

(Model Blueprints), but only 

few extension or import 

options and low degree of 

freedom

Integration of all common 

Python librarys and 

extensions

Machine Learning Library 

(MLlib) and diverse APIs to 

common frameworks

SciPy, Pandas, IPython, 

Anaconda, TensorFlow, 

Keras, Scikit-learn, 

PyTorch, cuDNN, DALI, 

TLT…

Training 

Environment

Azure Machine Learning 

Studio/Designer, Learning 

Environments, R and 

Python SDK integration, 

distributed training with 

PyTorch an TensorFlow 

integration options

AI Platform Training, 

AI Platform Deep Learning 

Containers,

AI Platform Deep Learning 

VM Image

SageMaker Experiments, 

Distributed Training, 

Debugger

SageMaker Neo as 

transfer mechanism to 

desired hard- and software 

environment

Data Intelligence 

Modeler

Watson Machine Learning 

Deployment Space for 

configuration, training, 

testing and transfering 

models into deployment

RapidMiner Studio, local or 

server-based instances 

possible, Radoop 

extension for executing 

jobs in Hadoop clusters

KNIME Analytics Platform

TensorFlow, hosting of 

TFX Pipelines on Apache 

Airflow, Apache Beam or 

Kubeflow Pipelines, Keras 

integration for Deep 

Learning

Data Science Studio 

(DSS), Usage of ML 

engines of scikit-learn/XG-

Boost, MLLib, H2O or 

Vertica on hosted 

environments

Kubeflow Fairing to train 

(local) Python codces in 

cloud environments on 

remote, 

support of the  Chainter, 

MPI, MXNet, PyTorch and 

TensorFlow (TFJob) 

frameworks

see below, hosted on 

more powerful computing 

environments

Explorative Test 

Environment / 

Prototyping

Azure Machine Learning 

Studio, Learning 

Environments, 

Experiments

AI Platform Notebooks: 

scalable hostet VM 

instance with pre-

configured JupyterLab 

environment

SageMaker Studio 

Notebooks, scalable 

hosted Jupyter Notebooks

Data Intelligence 

Modeler

SPSS Modeler or Python 

notebooks in Watson 

Studio

RapidMiner Studio KNIME Analytics Platform

TensorFlow Transform, 

add. Model Validator and 

Evaluator functions as well 

as visualisation

DSS, 

functions for accessing 

and exploring data

Jupyter notebooks,  

management of 

experiments and pipelines 

in centrla UI

Jupyter Notebooks, 

RStudio, SAS Modeler, 

MATLAB, JMP …

Data Connection 

Management 

(Batch)

Multiple modules possible, 

first Azure Machine 

Learning Datasets, also 

Azure Data Catalog, 

Resource Manager, 

Resource Provider

Only rudimental 

management functions, 

currently beta version of 

MLOps (AI Platform 

Pipelines)

SageMaker Data 

Wrangler, SageMaker 

Feature Store

Data Intelligence 

Connection 

Management

Watson Knowledge 

Catalog 

Data Connection 

Management, definition of 

Data Schematas in DaPro 

Extension

Nodes resp. operators for 

accessing local and 

server/cloud databases, 

Big Data extension

TensorFlow Data 

Validation, add. Services of 

the resp. pipeline 

einvironment

Extensive interfaces to 

common data sources, 

definition of Data 

Schematas possible

Paxata Data Prep

Tendentially rudimentary, 

depends of the Kubernetes 

environment as well as 

underlying platform 

(Google Cloud, AWS, 

Azure, IBM, On-Premises, 

Local)

Metadata-Module

Spark SQL and Data 

Frames for connections in 

Scala, Java, Python und R

Data Connection 

Management 

(Stream)

Azure Stream Analytics 

(Jobs)

Only rudimental 

management functions

JSON-Strings as request 

on web-based API

SageMaker Pipelines, add. 

diverse Edge Device 

deployment options

Data Intelligence 

Connection

Management

Steaming Analytics 

environment (Beta) in IBM 

Streams, add. Streams 

Flow in Watson Studio

No native functions, 

Streaming extension 

(Alpha) for Flink and Spark-

based stream analyses as 

wenn als Kafka connector

Depending on Deployment 

Environment (not native), 

recommended locally, 

Azure ML, SageMaker and 

Spark

No native functions, KNIME 

streaming execution 

extension (Beta)

Apache Beam as 

fundament of stream 

pipelines

-

No native functions, focus 

on web-based endpoints 

and APIs

Kubeflow Feast (Alpha-

Version) for Feature 

Storage, Management and 

Serving (Batch und 

Stream-Daten)

Spark Streaming

...
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MLOps

(extensive functions)

Django, Pyramid, Flask, 

Bottle, Bitbucket, Jenkins, 

web2py, Zope, Jetpack 

SDK, DeepStream SDK, 

NVIDIA Triton…

No native functions, 

environments are loceted  

locally or on platforms

Gudided, automated 

creation of Analysis 

Processes on DataRobot 

platform, 

API for accessing the 

functions in own Python 

clients possible

Spark background Engine 

for cluster computing in 

Java, Scala, Python- or R-

based environments

Spark framework on 

Hadoop YARN, Apache 

Mesos,  Amazon EC2, 

Kubernetes , standalone 

usable

Kubeflow Pipelines:

Management of 

deployments on 

Kubernetes clusters

Kubeflow Feast (Alpha-

Version)
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 The application layer reflects the interaction of the architecture with the users and the integration of the 

results and actions into business processes and IT systems. 

 The starting point for ML-based product and/or process optimisation is an operational challenge for which 

specific KPIs and goals must be defined in Business Understanding. 

 The use of the architecture starts with an interface to the data connection management, which enables the 
initial connection to existing IT systems and underlying databases in the following phases Data 

Understanding and Data Preparation. 

 In the subsequent phase of modelling and evaluation, analysts or (citizen) data scientists can access the 

exploratory test environment, the training environment and ML project management via an interface. 

 Through interfaces to the deployment environments, model results and, if necessary, actions are made 
available and can then be integrated into IT systems and/or business processes. 

 Separate access to the deployment management should ensure that created scoring processes are 

executed in a separate environment and that access options exist for further user groups such as specialist 

departments or management, but also IT systems and facilities themselves. In addition to user interaction, 

scoring processes can be triggered by a separate API, and there is also the option of exporting scoring 
processes to enable application-oriented (e.g. edge device-supported) deployments.

Application - Summary

35
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 The basic activities of business understanding address the creation of an understanding of products, 

processes, systems, goals and problems. 

 The reference architecture supports as-is analyses, the definition of the focus as well as the derivation and 

discussion of potential machine learning problems and tasks. 

 At the asset layer, problems are analysed and goals and KPIs are defined. 

 The management is responsible for a strategic perspective in the constitution of a common vision, the 

composition of the project team and the provision of resources (e.g. budget and time).

 Domain experts play a decisive role in the analysis of the current situation, the derivation of goals and the 

delimitation of problems. In this context, a rough analysis of the IT systems is also carried out with the 

involvement of the IT departments in order to address potential intervention possibilities of ML and their 
requirements for the solutions to be developed at an early stage. 

 At the edge device layer, domain experts and IT discuss whether the use of edge devices is an option or a 

requirement, or whether it should be neglected. 

 The role of the data scientist supports the translation of general problems and goals into potential machine 

learning problems in order to obtain an early assessment of the possibilities and limitations of the application 
of ML. Citizen Data Scientists act as a coordinator and orchestrator of the actors and take on important 

project management functions. 
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 The tasks of data understanding consist of building up an understanding of the relevant data sources for 

(possible) influencing and target variables of an identified problem as well as a more detailed assessment of 

data quality and quantity. 

 In order to specify the information and underlying data on product, process and plant (components), existing 

IT systems must be analysed in detail and the necessary database access must be established. 

 Important players are domain experts who know asset and IT systems from a user perspective, as well as IT 

departments that help with the implementation of data connections and ML environments. 

 An initial exploratory assessment of data quality requires an environment of (exploratory) data analysis. 

Therefore, it is recommended to implement an exploratory test environment, data connection management 

and ML project management already in the data understanding phase. 

 The reference architecture provides an overview of the general solution space. Since working with data 

extracts is recommended, high computing power is not necessarily required. While management may be 

involved in the selection of platform solutions, the Citizen Data Scientist orchestrates the essential activities, 

such as the assessment of data quality. 

 The data scientist supports the selection and installation of the environments as well as the explorative 
analyses and visualisations - which in turn have to be interpreted together with domain experts.



DaPro

Application - Data Preparation

40

Reference Architecture



DaPro

Application - Data Preparation

41

Reference Architecture

 Data preparation addresses all relevant activities for preparing data sets and connections for training 

models. 

 The development of data connections begins at the asset level, where access to system and sensor data as 

well as interfaces for data access must be prepared. 

 Data connections must also be set up at the edge device level, if planned, with the involvement of the IT 
departments. 

 The core tasks at the network infrastructure level consist of establishing access to data sources selected in 

the data understanding and at the ML level in carrying out the data preparation steps. For this purpose, the 

exploratory test environment must be set up as a working environment for setting up analysis processes, as 

well as a suitable ML project management for managing users, processes, versions and environments. 

 The core tasks are performed by (Citizen) Data Scientists and consist of merging heterogeneous data 

sources, data cleansing (e.g. removal of incomplete values, handling of outliers, estimation of missing 

values, ...), feature engineering as well as providing a suitable data set and pre-processing processes for the 

training environment. 

 Domain experts are involved in evaluating the steps, and iterations are common practice, especially with the 
modelling and evaluation phases.
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 In the modelling phase, different modelling approaches are selected for the learning problems discussed in 

Business Understanding and transferred into tasks for training models.

 In this process, analysis processes are set up and executed using the largest possible database. 

 On the one hand, the explorative test environment is used, in which the first analysis steps were already 

created in the data preparation phase. On the other hand, the modelling phase requires greater computing 
power, since the test and training data are to be included in the training as extensively as possible, parallel 

analysis paths are created and tasks such as hyperparameter optimisation will also arise.

 At this point, at the latest, a training environment must be set up and used that can be hosted either on-

premises or on the cloud. The reference architecture introduces an overview of alternative solutions for this, 

which can, however, be individually developed or extended. 

 Furthermore, the use of an ML project management for the administration of experiments, processes, 

environments and users is recommended and should be set up accordingly. 

 The essential modelling tasks are carried out by (Citizen) Data Scientists, supported by IT departments in 

providing the environments and data connections. 
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 The evaluation phase serves to assess the trained models with regard to performance and quality criteria. 

These (summarised as evaluation criteria) are dependent on the requirements of the application and IT 

systems and are therefore largely provided by domain experts and IT. 

 Both the models and scoring processes are evaluated with regard to the requirements of the application. In 

addition to mathematical target values, it is also necessary to evaluate the meaningfulness and plausibility of 
the results obtained, taking into account the domain knowledge. 

 In this step, the analysis steps and possible deployment scenarios must also be evaluated, which in turn can 

result in new requirements for both data collection and the application of the models. 

 Visualisation also plays an important role in creating transparency and understanding. 

 On a strategic level, this is followed by an assessment of the results in terms of their usefulness for the 
originally set goals and KPIs. Here, special focus must be placed on the applicability of the models and their 

integration into the IT systems and business processes.

 In addition to domain experts, management must also be involved. The goal of the phase is to select models 

and scoring processes that are then deployed and put into operation.
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 The final phase includes the implementation of deployments and their management.

 For this purpose, the selected models and analysis processes must be transferred into scoring processes 

and the type of deployment must be selected. Scoring processes can run server-based, in databases, in IT 

systems or on edge devices and must be implemented accordingly. 

 The reference architecture offers assistance in the design and solution selection of scoring processes, 
deployment environments and deployment management. 

 In addition to the one-time setup of the environments with the involvement of IT departments and data 

scientists, the goal is the long-term delivery and maintenance of deployments by the users (e.g. specialist 

departments), who must also be enabled to carry out and maintain scoring processes in the long term. 

Deployment criteria must therefore be defined for continuous evaluation. 

 Furthermore, strategic tasks consist of constituting and distributing the knowledge gained in the organisation, 

developing a strategy for deriving concrete measures based on model outputs, and integrating them into the 

structural and process organisation.

 For individual solution patterns, the Citizen Data Scientist takes on a central role as a company-internal 

service provider. 

 Depending on the strategy, these tasks can also be carried out by machine and plant manufacturers or 

providers of data-based services. 
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Illustrative Use Cases
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Illustrative Use Cases
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Next Steps

 Help us with the validation!

 Online survey: 15-20 min. time required

 Link: https://forms.office.com/r/UHdE9eC00U

Reference Architecture

 Let's get into conversation!

 More detailed publication in 2022:

https://forms.office.com/r/UHdE9eC00U
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